The Bodger's Guide to LDMOS Power Amplifiers

or

How to get serious SHF power without really knowing what you're doing!

John Worsnop G4BAO

Laterally Diffused Metal Oxide Semiconductor

LDMOS for Bodgers

- Bodger (noun)
 - A highly skilled itinerant woodturner, who worked in the beech woods on the chalk hills of the Chilterns, in England
- Bodging (Br. Slang)
 - an inexpertly or roughly done job, typically in the field of DIY.

LDMOS for Bodgers

- Modified N-channel MOSFET.
- Three terminals of the transistor are accessible from the top of the chip.
- and source is at the bottom allowing direct connection to ground.
- No nasty beryllium oxide insulator needed.
- matching circuitry can be added within the transistor package.
- Devices that operate up to about 4GHz
- Vdd typically 28 or 50V.
- 100 Watt plus devices at 2GHz
- Simple positive gate bias circuitry.
- Hard to destroy in development.

Amplifier Choices for Amateurs

Buy one (£££)!
image © DB6NT

"Grow your own"

Various kits available

Modify surplus

» The Bodger's choice

© Bravo Alpha Oscar 2009

It's the impedances, stupid!

- Power transistors are low impedance devices.
- Typically less than 10hm, resistive and reactive
- You have to match them to 50ohms
- Matching circuits have a bandwidth

It's the impedances, stupid!

- So the (Bodger's) design process is:
 - Make the device look like 50 ohms in and out by transforming its impedances over the required bandwidth.
 - Make sure the impedance matching doesn't make the amplifier unstable at other frequencies.

So we need the device datasheets, right?

• WRONG!

- Fine if data is available for the frequency you need
- Most SHF LDMOS is designed for cellular radio.
 - 900MHz, 1.8GHz, 2.1GHz, 2.3GHz
- So we're OK for 13cms then...but I want a 23cms PA.

So we're stuck?

- Amateurs don't have the technology to measure device impedances.
- So let's call upon.....

The Bodger's subroutine!

Applicable to a "new" design or retuning surplus

The LDMOS Bodger's toolkit

- Along with a soldering iron, the basic tools are:
- pair of cheap vernier callipers
- a roll of adhesive copper tape
- a sharp scalpel
- a roll of plastic insulation tape
- a Smith Chart program
- "Appcad" program

and of course, something to bodge

© Bravo Alpha Oscar 2009

A brief aside on the Smith Chart

"Immittance" Chart

- A whole day could be given over to its usage
- It allows you to plot complex impedances, admittances and line lengths.

A brief aside on the Smith Chart

- Series L or C moves you along constant R circle
- Shunt C or L moves you along constant G circle.

A brief aside on the Smith Chart

- Usually use "normalised" impedances,
 - i.e (actual Z)/Zo
- Positive reactances (Inductive) are in the upper half of the chart
- Negative reactances (Capacitive) are in the lower half of the chart
- Impedance can be plotted directly

© Bravo Alpha Oscar 2009

Something to Bodge for 23cms

- 900MHz Cellular base station amplifiers
- Look at the device datasheet.
 - Avoid devices that are internally matched.
 - Really high power ones tend to be.
- Using the Bodger's subroutine, either:
 - strip off all matching and try again from scratch using sticky copper foil.
 - Use a "T" step from very wide down to typically 7 -9 ohm line on input.
 - 5-7 ohm line on output, and trim length starting at 0.25λ
- or

 Use existing lines and try to move input match then Pout up in freq in stages by changing capacitor values.

Freescale MRF9045

VDD = 28 V, IDO = 350 mA, Pout = 45 W (PEP)

f MHz	Z _{in} Ω	Z _{OL} * Ω
930	0.81 + j0.25	2.03 – j0.09
945	0.85 + j0.05	2.03 – j0.28

Zin = Complex conjugate of source impedance.

Z_{OL}* = Complex conjugate of the optimum load

impedance at a given output power, voltage, IMD, bias current and frequency.

Freescale MRF9045 1296MHz

V_{DD} = 28 V, I_{DO} = 350 mA, P_{out} = 45 W (PEP)

f	Zin	ZoL*
MHz	Ω	Ω
1296	1.9+j4.1	1.2+j3.1

Zin = Complex conjugate of source impedance.

Z_{OL}* = Complex conjugate of the optimum load impedance at a given output power, voltage, IMD, bias current and frequency.

"measured" impedances

Reverse Engineer the existing input circuit

- Determine the board thickness and material
 - Find a 50ohm line and measure its width (say 1.8mm)
 - Use Appcad to work out εr
- Measure Ls, Cs and microstrip lines
 - Scale line lengths by 1296/900
- Plot on your Smith Chart
 - Assume that Zin increases from 900-1296 and see which way the final match goes
- Iterative process
 - Change a C based on above see if amp matches better at 1296.

Reverse Engineer the existing input circuit

Example 1.7+j1 at 900MHz from datasheet
Matched with 0.131λ 12Ω, series, 10pF shunt, 10pF series

- $0.131\lambda = 0.188\lambda$ at 1296
- Assume Zin changes to 3+j3 and see what C will have to do to rematch

Do's and don'ts

- DO try and avoid shunt capacitors (losses)
- DO Watch the output capacitor's rating and type.
 - 100Watts in to 50 ohms means that 1.4 Amperes of RF is flowing.
- DO try and avoid trimmers except when "bodging".
 - Shunt capacitors have high currents as well
- DO recycle as much of the original amplifier as you can
- DON'T bother trying internally matched devices.
- DON'T put too much gate bias voltage!
- DON'T use standard FR4 board material for new designs.
 - At even 30 Watts it cooks!

Acknowledgements

- LDMOS pictures ST Microelectronics
- "Smith" program Prof. Dellsperger Univ of Berne
- Appcad program