The Bodger's Guide to Scattering Parameters

or

Understanding measurements on SHF networks and devices for the mathematically challenged!

John Worsnop G4BAO

www.g4bao.com

www.bravoao.co.uk

Generalized two-port network, characteristic impedance Z0

$$\begin{array}{c} a_{1} \rightarrow \circ & \\ b_{1} \leftarrow \circ & \end{array} \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{array}{c} & \circ & \bullet a_{2} \\ & \circ & \bullet b_{2} \\ \end{array}$$

© Bravo Alpha Oscar 2010

Consultancy, Writing and all things Wireless

S-parameters for Bodgers

- Bodger (noun)
 - A highly skilled itinerant woodturner, who worked in the beech woods on the chalk hills of the Chilterns, in England
- Bodging (Br. Slang)
 - an inexpertly or roughly done job, typically in the field of DIY.

What are S- parameters?

- Formal definition:
- "S-parameters describe the response of an N-port network to voltage signals at each port".
- They allow us to describe the properties of incredibly complicated networks as "black boxes"

Some 1 and 2 – Port networks

What are S- parameters?

- For an RF signal (a₁ or a₂) incident on one port, some fraction of the signal bounces back out of that port, some of it *scatters* and exits other ports and some of it disappears as heat or electromagnetic radiation.
- S parameters are the familiar reflection and transmission coefficients
- Transmission is related to gains and attenuations
- Reflection is related to VSWR and impedance

The Bodger's Guide to Scattering Parameters John Worsnop G4BAO What are S- parameters? In the diagram below, a and b represent the square • root of power, so a_1^2 is the power incident at port 1, b_2^2 is the power leaving port 2, etc. The outputs can be related to the inputs by $b_1 = s_{11}a_{1+}s_{12}a_2$ and $b_2 = s_{21}a_{1+}s_{22}a_2$ **b**2 S21 a1 Port1 Port 2 source S11 S22 load 2-port b1 a2 S12

© Bravo Alpha Oscar 2010

Consultancy, Writing and all things Wireless

What are S- parameters?

$$b_1 = s_{11}a_{1+}s_{12}a_2$$

and
 $b_2 = s_{21}a_{1+}s_{22}a_2$

Or for those of you who left school after 1973, as a matrix.

$$\begin{vmatrix} b_1 \\ b_2 \end{vmatrix} = \begin{vmatrix} S_{11}S_{12} \\ S_{21}S_{22} \end{vmatrix} x \begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$$

 $b_1 = s_{11}a_{1+}s_{12}a_2$ and $b_2 = s_{21}a_{1+}s_{22}a_2$

- Now what happens when port 2 is terminated in Z₀?
- That sets $a_2 = 0$
- $s_{11} = b_1/a_1$ i.e the input reflection coefficient
- $s_{21} = b_2/a_1$ i.e the forward transmission gain/loss

 $b_1 = s_{11}a_{1+}s_{12}a_2$ and $b_2 = s_{21}a_{1+}s_{22}a_2$

- Now what happens when port 1 is terminated in Z₀?
- That sets $a_1 = 0$, and
- $s_{22} = b_2/a_2$ i.e the output reflection coefficient
- $s_{12} = b_1/a_2$ i.e the reverse transmission gain/loss

What are S- parameters?

So to summarise..... with network ports terminated in Z₀

- S₁₁ = input reflection coefficient
- S₁₂ = reverse transmission coefficient (port 1/port 2)
- S₂₁ = forward transmission coefficient (port 2/port 1)
- S₂₂ = output reflection coefficient
- These include magnitude and phase angle

Typical parameter data

AT-42036 Typical Scattering Parameters,

Common Emitter, Z_0 = 50 Ω , T_A = 25°C, V_{CE} = 8 V, I_C = 10 mA

Freq. GHz	S ₁₁ Mag.	S ₁₁ Ang.	S ₂₁ dB	S ₂₁ Mag.	S ₂₁ Ang.	S ₁₂ dB	S ₁₂ Mag.	S ₁₂ Ang.	S ₂₂ Mag.	S ₂₂ Ang.
0.1	.72	-46	28.3	26.09	152	-37.0	.014	73	.92	-14
0.5	.59	-137	20.9	11.13	102	-31.0	.028	44	.58	-27
1.0	.56	-171	15.4	5.91	80	-28.2	.039	47	.51	-29
1.5	.56	169	12.1	4.03	67	-26.6	.047	52	.50	-33
2.0	.58	155	9.7	3.06	55	-24.2	.062	55	.48	-38
2.5	.59	147	8.0	2.50	48	-22.6	.074	61	.47	-42
3.0	.61	137	6.5	2.10	38	-20.8	.092	65	.46	-51
3.5	.63	128	5.2	1.82	27	-19.6	.105	62	.47	-63
4.0	.63	117	4.0	1.60	17	-18.0	.126	57	.49	-72
4.5	.63	106	3.1	1.43	7	-16.5	.149	53	.51	-80
5.0	.64	93	2.3	1.30	-3	-15.4	.169	48	.52	-87
5.5	.67	79	1.5	1.19	-13	-14.3	.193	41	.51	-94
6.0	.72	70	0.6	1.07	-23	-13.4	.215	35	.46	-105

Typical parameter data

Fig.8 Common emitter input reflection coefficient (S₁₁).

Typical parameter data

 I_c = 120 mA; V_{CE} = 15 V; T_{amb} = 25 °C.

Fig.9 Common emitter forward transmission coefficient (S_{21}).

© Bravo Alpha Oscar 2010

Why S-parameters?

They are defined <u>with network ports terminated in Z₀</u> so are

- Easy to measure
 - Device is terminated in system measurement impedance
 - Termination is resistive and can be very accurate at SHF
 - No tuning required to terminate in Z_0
 - Broadband swept measurements possible
 - Can measure the device at the end of long coax leads
 - Resistive termination is more likely to be stable
 - Different devices can be measured on the same setup
- Easy to use
 - Overlay a Smith chart on a polar plot of s_{11} or s_{22} and you can read off the device Z_{in} and Z_{out}

Why S-parameters?

- So what good to a designer is a measurement of a transistor terminated directly in 50 ohms then?
- In most case, the device does not "see" 50 ohms

Why S-parameters?

- This is where the Maths come in, (and I run for the computer!)
- From S parameters you can derive:
 - Maximum available gain (Maximum stable gain).
 - Stability factors
 - Input and output impedances for a given gain
 - Optimum match for best noise figure
- And hence the input and output matching circuits

Example - ATF-521P8 P HEMT @ 3.4GHz

Agilent ATF-521P8 High Linearity Enhancement Mode[1] Pseudomorphic HEMT in 2x2 mm² LPCC^[3] Package

Data Sheet

Reserved on

Agilent Technologies's ATF-521P5 is a single-collings high linearity, low make Do RENT housed in an blead JEDGOstandard leadless plastic obta carrier (LPOOP) package. The derive is ideal m a medium-power, high-linearity am-philer. Its operating frequency range to from SI Mile to 6 City.

The thermally efficient package mansurve only frame a firms a 0.75mm. Be buckside metalization provides consi-lent thermal dissignition as well as viand weidence of solder reflow. The device has a Point MTTF of over 300 years at a systemizer temperature of -89°C Al derives are 20% RF & DC boted.

- Behaviorent main taskesing mulips a alagin particuli² per distante primera dal mapaten primeri agri sa catala dalle: mitanet diese natio deriver
- 1. Beiter im reliability datachers für detation MITT/shake
- 1. Confirm to 1808C reference on the MOCCE for 287-94
- Unsering Pages of Multi (J2000) is non-relative OP3 do ideal by DC bias pages.

Pia Compositions and Package Marking

Pie Hilleren Ph 3 Beh Ph 7 (1) 2Px **6** - 8 Ref/lew

Factory reading provides an installed and

"IF" in Derive Colo ** a Marih ani dalamini termethal name/advectory

- - Rest-and UNR Q2 and Q3, driver or PC5 and W CDNA wireless in its structure
- Driver amplities is sWIAN,
- General purpose discrete E-pHDMT for ether high linearity applications

Single veilings operation High linearity and PidR Low seize Bases

Features

- Excellent uniferrally is product. more if is at is an
- Small package size: 28x28x875mm Point MTTF > 200 years?
- MSL 1 and lead-tree Tape- an d-read packing in proping
- avaitable: Specificatiess
- 2 GHz 4.9/, 209 mA (1) p.) 42 dim extput 193
- 263 dire exipstperer stil diggele compression in a
- Lödikasiss figura 17 dl Gale
 - 125 dB LEHM⁴

Applications

- pre- inter supplifier for Cells tac/
- WLL/BLL and MMDS applications
- Agilant Technologies

© Bravo Alpha Oscar 2010

Acknowledgements

- Hewlett Packard Application note 95, Sept 1968
 "S-parameters, circuit analysis and design"
- Or the updated version from Agilent. Application note 95-1 "S-parameter techniques for faster more accurate network design"
- www.microwaves101.com
- Appcad program

