GHz Bands EME from a "challenging" location

John Worsnop G4BAO

© Bravo Alpha Oscar 2022

EME for Bodgers - some observations

"Backyard Moonbounce" talks have been done to death at Microwave Round Tables, so why another one?

I got sick of going to "Backyard EME" talks where the first slide was:

- "First, find your obsolete 12ft TVRO dish and load it on to the back of your monster jeep and trailer."
 - or

"Even a small 2x19 element 144MHz array can give you good results"

These people must have no neighbours and very compliant partners

EME for Bodgers - some observations

GHz Bands EME is satisfyingly "predictable"

It takes time to make something work For me, 2 years from concept to first QSO.

There are no short cuts and you never stop "tweaking"

So, why is my QTH so "challenging?"

- "Fen Edge flatland" and 4m ASL
- Neighbours' houses
- No horizon view from ground level in any direction
- Trees
- Noise

Assessing your "Moon Window"

- Here I'm limited by (big) trees from Moonrise to Zenith at all but the highest declination.
- I cannot operate below 20 degrees elevation due to houses and EMR limitations.
- But you have to work around your QTH! I still make QSOs

Beware small trees!

How it started (2012)

Beware small trees!

How it's going (2022)

YouTube

Assessing your "Moon Window"

Like the Sun, the Moon rises in the East and sets in the West

Unlike the Sun, the Moon's DECLINATION and therefore it's track across the sky "repeats" over a lunar month not over a year

GM4JJJ "Moonsked" lets you do minute by minute predictions or look ahead and back

@theRSGB

heRSGE

Declination

- Moon declination varies between about +/-27 degrees over a lunar month.
- So, Moon Zenith varies from about +65 to just +9 degrees between max and min declination.
- Meaning the Moon is above the horizon between 25 and 6½ hours.

@theRSGB

Min Declination

YouTube

Assessing your Moon Window

Sked Maker - Registered to G4	4BAO												-	
<u>Eile E</u> dit <u>W</u> indow <u>H</u> elp														
Start	Finish		Interval		@ GM4JJJ 2002-	12				-	-			
Year Month Day	Year N	lonth Day	⊖1 hou	ar				、 Л Л	\sim	nol	<u>7</u> ~ ~ ~	00		
2022 🔺 0 🔺 12	▲ 2022 ▲ a	A 14 B	🔺 🔘 30 m	ins	Calculate		JSE	- 171		IISK	$-e^{-1}$	- 20	()	
2022 • 9 • 13	• 2022 • 9		 O 10 m 	ins 🔿 1 min	Calculate			/ IVI					u u	
Station A		More	Station B		Echo Width									
25274244			Low cont									Δ.		
210BIW Lat	52.27083	<u> </u>	OKICOM	Lat	49.9375		hc	nn	$\sim \sim$	mo	ro	Ann		inh
2M0EXD Lon	-0.2083333	Day 🗸	OK1CU	. Lor	-14 54167		ЛК	ле	0.0	ше		АЛ	1 51	лан
3B9C			OK1DCF			- r			00			ז אי א		
3D2LR Loc	JO02cg	loday	OK1DFC	Loc	JN79gw	_								
Max	EL 90°	tome Home	OKIDIG		Max EL 90°			Λ.			\frown		• •	•
G4BAO	•	10368 MHz	OK1DFC					\nr	INN			n n	ncit	inn
Min	EL O"	Norse Basida			Min 0°		10 /	7110	лО		JU		USII	IUI
		Moon Position	144: 750W 18	elM2 10m dish -	432: 750W 38eIM2 1	0m								
ATE	UTC	AZ A	EL A	MNR	POL	AZ B	EL B	GHA	DEC	DGR	TSky	RGE Km	DOP	Echo Width
022-09-13 Tuesday	00:00	140°	+38°	0 dB	-8°	157*	+45°	329°	+7*	1.2dB	3°K	381084	+3799 Hz	197 Hz
022-09-13 Tuesday	00:30	149-	+41	U dB	-9	170*	+40	337	+8	1.2dB	3 K	381197	+ 1423 Hz	204 Hz
22-09-15 Tuesday	01.00	150	-40	1 dB	12*	190*	+47	251*	+0	1.20D	2.4	201422	- 1043 Hz	207 112
122-09-13 Tuesday	02:00	178°	+45°	1 dB	-13	100*	+46°	350*	+8°	1.2dB	3°K	381535	-5085 Hz	200 Hz
22-09-13 Tuesday	02:30	189°	+45°	1 dB	-12°	209*	+44°	6°	+8°	1.2dB	3°K	381648	-8567 Hz	202 Hz
22-09-13 Tuesday	03.00	199º	+44°	1 dB	-11°	218°	+42°	13°	+8°	1.2dB	3°K	381761	-10968 Hz	195 Hz
022-09-13 Tuesday	03:30	208°	+42°	1 dB	-10°	227°	+39°	20°	+8°	1.2dB	3°K	381874	-13244 Hz	185 Hz
022-09-13 Tuesday	04:00	217°	+40°	0 dB	-9°	235°	+35°	28°	+8°	1.2dB	3°K	381987	-15357 Hz	173 Hz
022-09-13 Tuesday	04:30	226°	+37°	0 dB	-8*	242*	+31*	35*	+9*	1.2dB	3*K	382100	-17273 Hz	159 Hz
022-09-13 Tuesday	05:00	234°	+34°	0 dB	-6"	249"	+27*	42*	+9"	1.2dB	3"K	382214	-18958 Hz	142 Hz
022-09-13 Tuesday	05:30	241°	+30°	0 dB	-5°	255°	+22°	49°	+9°	1.2dB	3°K	382327	-20387 Hz	125 Hz
022-09-13 Tuesday	06:00	248°	+26°	0 dB	-4°	261°	+18°	57°	+9°	1.2dB	3°K	382441	-21539 Hz	106 Hz
022-09-13 Tuesday	06:30	255°	+22°	0 dB	-3°	267°	+ 13°	64°	+9°	1.2dB	3°K	382554	-22396 Hz	87 Hz
022-09-13 Tuesday	07:00	261°	+18°	0 dB	-2*	273*	+9*	71-	+9*	1.2dB	3°K	382668	-22949 Hz	68 Hz
022-09-13 Tuesday	07:30	267°	+13°	0 dB	- 1-	278-	+4-	/9-	+9-	1.2dB	3°K	382781	-23190 Hz	52 Hz
022-09-13 Tuesday	08:00	2/3-	+9-	U dB	U-	284	-0-	3607	+9	1.2dB	3 K	382893	-23122 HZ	42 Hz
022-09-15 Tuesday	20:00	0919	+3		+4	001*	+ 116°	200	1 + 12	1.40D	294	295720	15054 Hz	112 Hz
022-09-13 Tuesday	21.00	0869	+129	0 dB	+ 2°	097°	+21°	275°	+12°	1.40B	3°K	385852	+14746 Hz	123 Hz
022-09-13 Tuesday	21:30	092°	+16°	0 dB	+1°	103°	+26°	282°	+13°	1.4dB	3°K	385966	+ 14132 Hz	136 Hz
022-09-13 Tuesday	22:00	098°	+21°	0 dB	0°	109°	+ 30°	289°	+13°	1.4dB	3°K	386079	+13218 Hz	149 Hz
022-09-13 Tuesday	22:30	104°	+25°	0 dB	0*	115°	+35*	297*	+13*	1.4dB	3°K	386192	+12018 Hz	163 Hz
022-09-13 Tuesday	23:00	110°	+30°	0 dB	-1*	123*	+ 39*	304*	+13*	1.4dB	3*K	386305	+10549 Hz	176 Hz
022-09-13 Tuesday	23:30	117°	+34°	0 dB	-3*	131*	+43°	311*	+13"	1.4dB	3°K	386418	+8834 Hz	189 Hz
														_

YouTube

What you can do on EME is determined by:

Budget (EME is not cheap)

Tolerance threshold of partner and neighbours, Patio size,

Moon Window

Dish size, equipment availability and cost

VouTube

My Starting point 2009

1.4m aluminium solid dish It cost me nothing!

Anything much bigger looks "ugly" and attracts too much attention

Can be easily disguised as "garden furniture" when not in use.

VouTuhe

Requirements:

Must be good enough to work "big guns" on CW and for JT modes

@theRSGB

I chose 2.3GHz first because...

Surplus PAs and cheap LNAs (G4DDK) available

NF 0.35dB, TX power 200W with 1.4m dish

But....Low activity

@theRSGB

Which band? The others

1.3GHz?

NF 0.3dB, TX power 200-400W, 1.9m dish minimum

Poor dish illumination so can be an alligator!!

Loads of digimode activity

Which band? The others

3.4GHz and 5.7GHz?

Do-able but PA could be expensive

Low activity NF 0.4dB, TX power 50W

10GHz?

Expensive SSPA, or TWT needed Loads of digimode activity NF 0.7dB, TX power 45W 1.8m solid dish – or so "they" say?

@theRSGB

VouTuhe

My start on 2.3GHz "back in the day"

All homebrew transverter remote from shack

Watertight "Storno" base station cabinet close to dish to minimise feeder losses Locked to 10MHz reference in shack

Low voltage 28V DC (27Amps!) fed out from house via "Sky feeder" hole

YouTube

YouTube

2.3GHz 1.4m dish system results

mode Call Locator F2TU JN38LG CW OK1CA CW JO7ØGM G4CCH 1093QL CW ES5PC KO38HJ CW CW G3I TF 1091GG OK1DFC JN79GW JT65c PY2BS **GG76** JT65c OK1KIR JO6ØPM JT65c IY/DI 1YMK KO06mb JT65c

YouTube

Updated 1.9m system (better)

Spid RAS rotator

Counterbalance

Optimised choke ring

Transverter+PSU moved closer to dish

@theRSGB

Updated 1.9m system (better)

8	WSJT 9	.1 by	K1JT										_	
File	e Setup	View	Mode	Decode	Save	Band	Help							
M	March Withle	work h	hinn	Mar	multur	ndahayaan waxaanaya	Madd gad	programme from the second	ront-urhov VVVVW	hdwyg whenh	and Adardy with www.	Az: El: Dop: Dgro	400n 217. 26. -18 I: -0	62 05 50 .8
	N Lev	el	Siq	DF	Vvidth	Az	EI	Q						
	12 -3. 13 -3. 14 -3. 15 -3. 16 -3. 17 -3. 18 -2. 19 -2.	.2 -2 .0 -2 .1 -2 .2 -3 .3 -3 .2 -3 .9 -3 .9 -3	28.8 29.3 29.7 30.1 30.4 30.7 30.8 31.3	-25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9 -25.9	$\begin{array}{c} 0.7 & 2 \\ 1.0 & 2 \\ 1.0 & 2 \\ 1.0 & 2 \\ 1.0 & 2 \\ 1.7 & 2 \\ 1.3 & 2 \\ 1.3 & 2 \end{array}$	217.4 217.5 217.5 217.5 217.5 217.6 217.6 217.6 217.6	26.1 26.1 26.1 26.1 26.1 26.1 26.1 26.1	4 3 3 3 2 3 2 2						•
Ĺ	Log <u>Q</u> SO		Stop	Monitor	. Į	<u>D</u> ecode	Ē	rase	<u>C</u> lear	Avg	Include	Exclude	e TxS	top
	To rad Grid: Hot A:	iio: 0 : kr	H3DP 510tt Az: 47 E	Et: 3 17	iokup Add 12 km		Г	Tx Firs	t				。 (((T× <u>1</u> T× <u>2</u> T× <u>3</u>
1	20 ⁴ 1	12 S 4:2:	Sep 1 3:55	6 Dse reeze DF:	ec 0.0	noise:-1	<u>∋</u> en Msg 2 dB	s <u>A</u> ut	ois ON d:6s			T	C C Xing: ECHO	T× <u>4</u> T× <u>5</u> T× <u>6</u> TEST

🌖 Spe	cJT	by K	(1)T																			_ 🗆 ×
Options		ł	Freq:	1668	DF: 3	97 (Hz)	I	BW	۲	Ι	>			Spee	ed: O	1 0	2	Оз	O 4	⊙ 5	O H1	C H2
) -1000 l.) -900 l) -(300 	-700 	-600 	-500 	-400 	-300 l.	-20 1	0 ·	-100 .	0 l.	100 l.	200 l	300 l	40 l)0 	500 	600 	700 	800 l.	900 l.i
9 80539			7 <i>7</i> X	80. X	042 B	2.63	10.53	ust I	842 (265	99 F.	98.)	ger Hada	<u>м~2</u> .,	Crewe	144						789723) 789723
STRATS				e. 92	1945 A	39 J.	99.4 <u>7</u>	i <u>na</u> je	4462	ж <i>й</i> ,	d^{μ}_{λ}	3 1 -5.5	2.49	1986).		N JANK	Υ.P.					12 g k spri
1373R			642	39-5	9966)	-344 A	8,843	1896 1	9 4 S	49 4	the first section of the section of	Nice	8.49	8719	\$259%	71 L						185522
				i i N		<u>.</u>	20185	1975) 1975	se Su i	(X)*	W.25	4742	2012	977 (1977 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 -	di fe							94883
158 P.			1	07 N	9. C. A.	er yek	(1277) (1277)	(34 <u>)</u> ,	697.s	1.2	<u>a</u>	telis.		ann da Annae	889.)	$\langle g_{2}\rangle$						1997
				1.13Q	86255	1998).	256.0	Attras.	147 E	(2) (2)	3. ya	1915 - J		<u> (</u> 23)	$\mathcal{T}_{\mathcal{M}}$							NATE:
			29). 29)	6. 	1. S.J	1923) 1923)	1978) 1978)	ti ti d		14. 1	Ng 1	9. j.j.	C Set 1	ri st	C. 1977.	999) 1993						essa.
367A				M	844 S	are.	engi (ana.	6472	\$35	thến.	:30g	887.)	74. Ve								82387
				et Vera	8. 6 8	laget is no Marija	90.90		836.	∂¥		5.43	¢	-Vetty	us a	$\mathbb{V}_{\mathcal{M}_{1}}$						885))
180162)			9 A. J.		./.w	in i	92.	<u>.</u>	4 . T. S.	817	223	8. A.	N.41	997. Maria	s. Sin ta		Sec.				n (s)	
					J]		14	:22	2:57	Γ]					-20) dB	
	-	-	-	-	-	-	_	-						-	-		-	-	-	-	_	

I could "see" my 2.3GHz echoes on WSJT Echo mode..... Woo - Hoo!!!!!

@theRSGB

It's all about the setting up

First tune up the feed for best TX/RX VSWR and TX/RX isolation.

Optimise the dish and feed by measuring ratio of sun to "cold sky" noise

@theRSGB

heRSGE

It's all about the setting up

Note that this is not the same as highest sun noise! Adjust LNA (in situ) for best sun/cold sky

Check for correct dish illumination on TX (overspill) Recheck sun/cold sky ratio This is an "iterative" process

@theRSGB

VK3UM EMECalc

Automates system calculations. "What if" analysis of

Band

Dish size and shape

Feed Type

Power and RX performance

Moon distance

Sun noise

👋 VK3UM EME Performance Calculator	
Two Station EME Receiver Performance Source Positions Planets	utiplier Note Pad Feed Type X ref Version History /Help About Exit
Tx A (Home Station) Default Diam Meth. Spacing Syst Senditivity Echo S/N 2320 MHz 274.93 dB 5 K 	→ Yagi Array Number of Yagis E 38.3 Array Gain Single Yagi Gain n dBi 12.65 dBi 1 H 38.3 10.50 dBd 12.65 dBi
GET IPSsiv CVour last stu dala record has been loaded. 0.00 dB C/S - ground -> 5.3 dB 0010 6.8 'K 45.3 'K 27 K 0 K 8 8 10.10 dB 0.63 dB 27.0 dB 0.6 dB 5.5 dB 26 'K 0 'K 4.2 dB Solar FNa LINALoss LINALoss <td>Parabolic Reflector Feed Type Septum (vith choke ring) Linear Pol. ↓ Circular Pol. ↓ Diameter Size 1/10 Efficiency Beam Vidh Gain Dich Gain 1.44 m ↓ Metric 0.38 ↓ 23% ↓ 6.30' 351 23.31 dBd 25.46 dBi</td>	Parabolic Reflector Feed Type Septum (vith choke ring) Linear Pol. ↓ Circular Pol. ↓ Diameter Size 1/10 Efficiency Beam Vidh Gain Dich Gain 1.44 m ↓ Metric 0.38 ↓ 23% ↓ 6.30' 351 23.31 dBd 25.46 dBi
Image: System Noise Temperature System Noise Temperature System Noise Temperature Dx Station as received at Home Station11.0 dB	Home Station Y Factor Calc Noise Flux Quiet Flux System Tk Noise Souce Guiet Source 230 'K 5 'K 85,9 'K C Sagitrarius C Termination C Aquarius Point Source Y Factor 5.28 dB C Virgo C Leo Apterture Source Y Factor calculations are only provided for 144 and 432 MHz C
Home Station as received at Dx Station 0.2 dB Prime Apogee Tx B (Dx Station) Defeat Diam Meth Spacing Sys Sensitivity Echo S/N 2320 MHz 274.93 dB 5 K \$	Yagi Array Number of Yagis E 11.6 * Array Gain -> Single Yagi Gain in dBi ▲ ▲ Beam Vidh 20.85 dBd 23.00 dBi 17.30 dBi ▲ ▲ ➡ H 11.6 * 20.85 dBd 23.00 dBi
Image: Second	Parabolic Reflector Feed Type Septum (with choke ring) Linear Pot I√ Carolar Po -> Diameter Size f /D Efficiency Beam Vidth Gain Dich Gain Dich Gain Dich Gain Dich Gain Iterat Pot I√ Septum (with choke ring) Tite Tite Find with Gain Dich Gain Dich Gain Dich Gain Dich Gain Tite Tite Tite Find with Gain Site of the Gain<
The Dupue Power Transmission Loss Power at Feed Moon Y 101 Watts 20.04 dBW 1.0 dB 80 Watts 19.04 dBW 65.611 W EIRP Ground Temperature	Effective Apenture Beam Vidth Ratio NoteBoth Moon and Sun correction factors are applied to Home and Dx. Station collustions. Moon Beam Fill Factor Sun Beam Fill Factor Gulf Ratio Moon Terre @ 277cm Phase 1.00 x 0.02 dB 1.00 x 0.02 dB 4.09
Hit N. Zob U. K. = 0. 37 dB	Moon Radar Equ. Moon Fluit 10-22 Moon Angular Diam Actual Moon Temp 52.26 dB 0.2633 0.559' 213 'K1.7 'K. Moon Return Loss kMs Corrected stu List 274.93 dB 356400 kMs 210.80 dB 62 William Var 200

@theRSGB

What next?

By end of 2015 I had 26 initials on 13, but frustrated by low activity

1.3GHz is where the activity is, but my dish is getting "really small" at only 8λ

Dish blockage can be an issue with big waveguide feeds Answer? - SM6FHZ Patch feed

 Custom designed for 1.8m prime focus dish

heRSGB

SM6FHZ patch feed

Photos G4BAO & SM6PGP

@theRSGB

1.3GHz results 2015-2020

121 "initials" including 33 on CW

Worked all continents completed on 1.3GHz in 2017

@theRSGB

YouTube

Faraday the shack cat

What next?

I had an old 10GHz transverter.

From G4HUP's estate, I bought a 12W 10GHz PA, plus a 3.4GHz transverter.

I'd earlier bought a 5.7GHz transverter from G4BAH's estate.

Already had some Ferranti 18W 7GHz PAs

Real microwave EME!

@theRSGB

Going higher - System Issues

Dish mesh was 6mm so pushing it at 5.7GHz (0.1 λ criterion)

3 dB beamwidth at 2.3GHz = 5 degrees At 5.7GHz = 2 degrees At 10GHz = 1 degree

Spid's basic tracking readout to 1 degree just not good enough to find and keep the moon above 2.3GHz

Need to upgrade mesh and tracking

Going higher - System Issues

Dish mesh was upgraded to 2.7mm In theory, good to 10GHz?

OE9JFL/DRIACS controller Uses absolute 12 bit 0.1-degree az/el position sensors, not pots or pulse counters Standalone PWM speed controller No PC needed to track Need to fit new sensors to the Spid

Design by Hannes - OE5JFL, implementation by Alex - HB9DRI

Fitting absolute sensors to a SPID/RAS

Based on Work initially done by Andreas DJ5AR et al

Elevation relatively easy- fit the sensor on an "outrigger".

See my article in Dubus vol 49 2/2020 for details

YouTuhe

Going multiband – Electronics

Common mechanical and electrical interface

Quick Change – 4 wing nuts 5 band swappable Transverter and PAs in feed cage 1.3 – 10GHz

Results on 1.9m Mesh dish to 2017

16 initials on 3.4GHz – 8 on CW 18 initials on 5.7GHz – 5 on CW

On 10GHz QSOs with "big guns" HB9Q and OZ1LPR JT4F Running just 12 Watts

Poor QSO results and Moon noise on 10GHz.

Beginning to look as if neither the tracking nor the mesh dish was "up to the job" on 10GHz

- Decided to concentrate on 10GHz and try a 1.1m solid offset dish (Because I had one!)
- Whoah! outperformed the old 1.9m prime focus on Sun and Moon noise!
- No dish blockage Better dish illumination

YouTube

Latest 10GHz system

Built myself a 2x GASFET 25W PA using cloned DB6NT boards

Upgraded to a 1.2m offset dish.

Slightly better!

Now 33 JT initials

No CW QSO yet!

YouTube

Bucket List anyone? 24GHz EME

Working on a 24GHz system.

With a travelling wave tube to do around 25 Watts output

Scary high voltages involved

Bucket List anyone? 24GHz EME

Have received the DL0SHF 24GHz Moon beacon in QRO mode

🔵 WSJT-X	v2.5.2 by K1JT, G4V	VJS, K9AN, and IV3N	IWV								_		×
File Configu	rations View Mod	le Decode Save	Tools Help										
		Single-Period De	codes						Ave	rage Decodes			
UTC di	B DT Freq	Message					UTC	dB	DT Freq	Messag	e		
1138 -1: 1140 -1: 1142 -1: 1144 -1:	5 0.5 1025 : 6 0.5 1017 : 8 0.6 1022 : 4 2.6 1033 :	CQ DLOSHF JC CQ DLOSHF JC CQ DLOSHF JC CQ DLOSHF JC	054 q3 Ge: 054 q3 Ge: 054 q3 Ge: 054 q3 Ge: 054 q3 Ge:	rmany rmany rmany rmany		Â							^
Log QS	D Stop	Monitor	Erase	Clear Avg	Deco	de	Egs	able Tx	Bal	Tx	Tune		Menus
1.25cm	24,04	7.998 480	Tx even/1st	•	Ę			Generati	e Std Msgs		Next	Now	Pwr
	DX Call	DX Grid	▲ F Tol 400	Christian	- 2	DLOSHF	G4BAO JO	002			0	Tx <u>1</u>	
-80	DLOSHF	JO54CG	Rx 1000 Hz	Submode E		DLOSHF	G48AO -1	15			0	Tx 2	
-60	Az: 68	703 km	Report -15	÷	-	DLOSHF	G4BAO R	-15			0	Tx <u>3</u>	
-40	Lookup	Add	T/R 60 s	÷.		DLOSHF	G48AO R	RR			0	Tx 4	
-20	2021	Nev 30	Sh Auto	Seq Call 1st Tx6		DLOSHE	G4BAO 7	3		~	0	Tx 5	-
51 dB	11:4	15:19				CQ G48	AO 3002				۲	Tx <u>6</u>	
Receiving	КЗ	Q65-60E		0 41								19/60	WD:15m

theRSGB

YouTube

Acknowledgements

- Thanks to:
- Bernie G4HJW for giving me the 1.4m dish in the first place
- All those EME "experts" who said "Nah, you can't do EME with a 1.2m dish" and still sneer at "doodle modes"
- But especially to those who said "Give it a go," particularly
- G3LTF, G4DDK, the HB9Q team

YouTube

Find out more...

www.g4bao.com

john@g4bao.com

www.rsgb.org

